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Abstract

To ensure quality and trustworthiness of mobile apps,
Google Play store imposes various developer policies.
Once an app is reported for exhibiting policy-violating be-
haviors, it is removed from the store to protect users. Cur-
rently, Google Play store relies on mobile users’ feedbacks
to identify policy violations. Our paper takes the first step
towards understanding these policy-violating apps. First,
we crawl 302 Android apps, which are reported in the Red-
dit forum by mobile users for policy violations and are later
removed from the Google Play store. Second, we perform
empirical analysis, which reveals that many violating be-
haviors have not been studied well by industry or research
communities. We discover that 53% of the reported apps
are either copying popular apps or violating copy-rights or
trademarks of brands. Moreover, 49% of reported apps are
violating ads policies by sending push notifications, adding
homescreen icon and changing browser settings. Only 8%
show malware-like behaviors, such as downloading mali-
cious files to users’ mobile phones. Based on our empiri-
cal analysis results, we extract 175 features for differentiat-
ing bad apps from benign apps. Our features cover use of
brand names and other keywords, third-party libraries, net-
work activities, meta data, permissions, and suspicious API
calls originated from third-party libraries. We then apply
10 machine learning classifiers on the extracted features to
detect reported bad apps. Our experiment result shows that
the best algorithm can detect them with 86.80% true posi-
tive rate and 13.6% false positive rate. On the other hand,
the same samples of policy violating apps are detected by
VirusTotal with true positive rate of 55.63% and false posi-
tive rate of 17.48%.

1 Introduction

Google Play store is infected with various types of bad
apps, including malware apps, privacy-violating apps, and

repackaged apps. Google has been trying to take down
these apps everyday with the help of anti-malware technolo-
gies, such as Google Bouncer, and inputs from researchers
and users. Previously, researchers have tried to under-
stand malware apps’ behaviors by painstakingly collecting
real-life malware app samples [34]. They have also pro-
posed various prevention or detection techniques for mal-
ware apps [11] [1] [21], privacy-preserving apps [28] [35]
[27] [26] [20] [24], and repackaged apps [29] [33] [23] [5]
[9] [30]. However, many apps behave in a manner that is un-
desirable, and yet less serious than these apps. For instance,
some apps redirect users to share about the apps on Face-
book page. Some are spams. Some apps simply lack proper
functionalists and qualities. These apps violate Google Play
developer policies but little has been discovered about the
overall picture of these apps. Therefore, we attempt to an-
swer the following questions in our paper: What categories
of bad apps are the most common ones on Google Play
store? What characteristics and behaviors make them re-
ported by users and removed from the market? Can the ex-
isting anti-virus solutions be used in detecting them?

Our paper makes the following contributions: (1) We
collect a set of real-life apps that are reported by users, and
later taken down by Google Play store. The lack of sample
set has been deterring researchers from creating solutions
and evaluating their effectiveness. Our collection of real-
life bad apps can serve as a baseline for various future anal-
ysis and research (2) We perform extensive empirical anal-
ysis on the app samples we collected. Comprehending and
characterizing these apps is the first step towards designing
defense mechanisms against them. Our empirical analysis
provides answers to various questions left unanswered by
previous research (3) We use machine learning approach to
detect the collected app samples. Although machine learn-
ing algorithms have been commonly applied for malware
apps detection, different feature sets are required for de-
tecting our app samples due to their unique characteristics
and behaviors. In our paper, we also figure out whether
the existing anti-virus solutions can effectively detect these



policy-violating apps.
First, we build an automated crawler, which collects

real-life apps that violate Google Play developer policies.
Google enforces these policies to maintain quality and
health of mobile ecosystem as well as to provide great expe-
rience for mobile users. Our crawler crawls the posts from
Reddit forum under Bad app category every 5 minutes. It
obtains the links of reported apps from the posts and imme-
diately downloads them from the Google Play store. After
3 months of automated crawling, our crawler follows the
same links again and checks if the bad apps are indeed re-
moved from the official Google Play store. In this way, we
are able to collect 302 bad apps that are reported and re-
moved from the Google Play store.

Second, we perform extensive empirical analysis on the
app samples we collected. Out of 302 crawled apps, we
discover that 161 apps violate intellectual property rights of
other apps or brands. The most copied apps include Be-
jeweled Blitz, Candy Crush, Mine Craft, Angry Bird Rio,
Flappy Bird, Hay Day, Fruit Ninja, Subway Surf, Con-
struction City, Sonic Dash, Gangster Vegas, and Grand
Theft Auto. The most copied trademarks or brands in-
clude Pikachu, Adobe, Pou, Mario, Disney, Mickey, Min-
ion, Counter Strike, and Despicable Me. The violation
normally takes place in apps’ titles, descriptions, icons or
screen-shots. We discover that 79 of them use similar titles,
76 use screen-shots that are different from in-app screen-
shots, and 73 use mis-leading descriptions that are different
from apps’ actual functions. Many reported bad apps use
misleading keywords, such as 2, II, Demo, Free, Pro, 3D,
and HD, claiming that they are an enhanced version of orig-
inal apps. Moreover, we discover 67 apps that claim to con-
tain certain functions but actually do nothing. They include
fingerprint scanner apps, flash light apps, font apps, wall-
paper apps, bluetooth apps, volume boosters, wifi boosters,
and mp3 downloaders.

Among the crawled apps, 147 apps violate ad policies.
We discover 70 apps with ads that simulate the user inter-
faces of the apps, 54 apps that modify browser settings or
add homescreen shortcuts on the users’ device as a service
to third parties or for advertising purpose, 34 apps that show
ads outside the applications, 17 apps from which users can-
not dismiss their ads without penalties or inadvertent click-
throughs, and 10 apps that display ads through system level
notifications. Our analysis shows that the most common
violating ad libraries include startapp, inmobi, umeng, iron-
source and actionbarsherlock. Moreover, we discover that
30 apps redirect users to install other apps from Google
Play store or third-party markets, 16 apps violate Youtube
policies by downloading videos from Youtube, and 9 apps
download unwanted mp3 files. We also discover 2 apps
which are automatically created by wizard services, and an-
other 2 apps which offer incentives to rate the apps.

Third, we apply machine learning algorithms for detect-
ing such misbehaving apps. To test the effectiveness of
our detection, we apply it on 302 real-life policy-violating
apps that we collected and 326 benign apps from Google
Play store. We extract 175 features from the apps’ use of
brand names and keywords, third-party libraries, network
activities, meta data, permissions, and misbehaving API
calls that are originated from third-party libraries. We input
the extracted features into 10 machine learning classifiers
for differentiating policy-violating apps from benign apps.
Three-fold cross validation is performed, where two-third
of our data set is used for training and one-third of our data
set is used for testing. The experimental results show that
our detection algorithm can effectively detect bad apps with
86.80% true positive rate and 13.6% false positive rate. We
also test our samples with VirusTotal [25], which scans the
submitted apps with existing 57 anti-virus solutions. We
assume that VirusTotal can detect a policy-violating app as
long as one of its anti-virus software reports it as bad. In
this way, we discover that the true positive rate of Virus-
Total is 55.63% and its false positive rate is 17.48%. In
terms of individual performance, the best anti-virus solu-
tion of VirusTotal can detect the policy-violating apps with
the true positive rate of 36% only. Our research shows that
despite the efforts of industry and research communities in
app market regulation, the problem of policy-violating apps
is still prevalent and requires attention from both industry
and research communities.

The rest of the paper is organized as follows. Section 2
clarifies our data collection process. Section 3 provides our
empirical analysis and findings. Section 4 describes the de-
tails of our detection mechanism, and Section 5 discusses
the experiment results. Section 6 summarizes the related
work and Section 7 concludes the paper.

2 Data Collection

In this section, we describe how we collect policy-
violating app samples. These samples are very useful for
analyzing the apps’ behaviors and consequently for design-
ing defense mechanisms and evaluating them. However, ob-
taining a set of policy-violating apps is not trivial. There
are two challenges to it. The first challenge is noticing what
apps are violating Google play policies, because users’ re-
ports to Google Play store are not available to the public.
To solve this, we seek to a public forum, Reddit, for such
app reports by users. The second challenge is that there is
a small time frame to crawl or download policy-violating
apps from Google Play, once the report has been made. To
solve this, we develop an automated crawler for download-
ing bad apps and creating a database of bad apps. We plan
to make the dataset available to the public, after this paper
is published.



To find users’ reports, we first crawl posts from
Reddit forum under the https://www.reddit.com
/r/BadApps URL. This URL is a subReddit (i.e. sub-
forum) used to report inappropriate apps to Google. The de-
scription of the subReddit is as follows. “A subreddit to dis-
cuss and coordinate reporting bad apps to the Google Play
Store. Note: A bad app refers to apps that are fake, pre-
tending to be from different developer, harmful, are there
just to serve annoying ads to you, or steal your info. An
app that is just poorly made should not be posted here, they
are fine.” Reddit provides Application Programming In-
terfaces (APIs) for various functions, including messaging,
editing posts and reading posts. The returned objects are
in JavaScript Object Notation (JSON) format. We develop
a Python crawler, which checks the BadApp subReddit fo-
rum every 5 minutes for latest users’ posts and comments.
Once we find a new link of reported app, we crawl the apps’
metadata, as well as Android Application Package (APK)
files from the Google Play store. The crawling continues
for over 3 month period. After that, we check the same
links of the apps again, and see if they are indeed removed
from the Google Play store. In this way, we crawl about 302
policy-violating apps.

The second set of our data is benign apps from Google
Play store. We randomly download 326 benign apps, which
exist for at least 3 months from the Google Play store with
an unofficial Python API.

3 Empirical Analysis

In this section, we perform empirical analysis on our bad
app samples and explain our findings on their characteristics
and behaviors. To understand policy violation behaviors,
we first put the Google Play’s developer policies into four
main categories: (1) intellectual property and deception, (2)
monetization and ads, (3) spam, store listing and promo-
tion, and (4) security and privacy. Although restricted con-
tent, such as sexually explicit content and violence, are parts
of Google Play policies, we do not find any apps violating
these policies. Table 1 shows the results of our empirical
analysis. We discover that more than half of bad apps are vi-
olating copy-rights or trademarks and about half of bad apps
are violating ad policies. Many of them also show several
other bad behaviors, such as spamming, violating Youtube
policies and downloading external files. The most common
types of policy violations are (i) apps that use similar title to
branded apps, (ii) apps that use photos or screenshots from
other brands, (iii) apps that provide misleading description,
(iv) apps that have little or no functions, and (v) apps that
hold ads simulating the user interfaces.

3.0.1 Intellectual Property Right Violations

The first five categories of policy-violating behaviors in
Table 1 are related to copy-right or trademark violations.
Copying may occurs in five places of bad apps: icons, ti-
tles, screenshots, descriptions or functions. An interest-
ing finding is that more copying apps make their icon, title
and descriptions similar to those of original apps, instead of
copying the exact features. Further analysis shows that re-
ported apps tend to use the keywords, such as 2, II, Demo,
Free, Pro, 3D, and HD, in their titles claiming that they are
an enhanced version of original apps. Moreover, we dis-
cover that more bad apps make their icons from the screen-
shots included in the metadata of original apps or in-app
real screenshots of original apps. However, many of them
use the same screenshots that as the original apps. These
findings have several implications for detecting apps that
violate intellectual property rights. For instance, similarity
scores between icons of copying apps, and screenshots of
copied apps should play an important role in detecting such
apps. We also discover that many of them uses screen-shots
that are different from in-app screen-shots and mis-leading
descriptions that are different from apps’ actual functions.
This suggests that if we can find discrepancies in these bad
apps, we will be able to detect them well.

We discover that there exist not only apps which copy
other original apps but also apps which violate the copy-
rights or trademarks of other brand or websites. For in-
stance, some apps include intellectual properties of Poke-
mon or Play Station although these original companies do
not have any related apps in the Google Play store. We fur-
ther analyze apps and brands that these bad apps normally
copy. They include Bejeweled Blitz, Candy Crush, Mine
Craft, Angry Bird Rio, Flappy Bird, Hay Day, Fruit Ninja,
Subway Surf, Construction City, Sonic Dash, Gangster Ve-
gas, and Grand Theft Auto. The brands or trademarks that
are violated include Pikachu, Adobe, Pou, Mario, Disney,
Mickey, Minion, Counter Strike, and Despicable Me.

Interestingly, we only find 11 repackaged apps whose
functions are exactly the same or similar to original apps.
This shows that although bad apps are one of the main dis-
tribution channels of malware, they are only a small portion
of entire policy-violating apps. Apps that claim to contain
some functions but actually doing nothing include finger-
print scanner, flash light apps, font apps, wallpaper apps,
bluetooth apps, volume boosters, wifi boosters, MP3 down-
loaders, and other music downloaders. The primary func-
tions of some bad apps are to redirect users to other web-
sites. We also find 22 apps which use irrelevant and exces-
sive keywords in app descriptions. For example, some font
apps use “Samsung Galaxy” keyword extensively in their
descriptions to direct mobile users to their apps during the
search. Such apps mostly reduce the quality of the app mar-
ket.



Category Policy Violating Behaviors No of Apps

Icon
(Copy-right)

Same as the icon of original app 4
Similar to the icon of original app 15
Violates copyright or trademark of original app (e.g. copying title, screenshots, in-app
real screenshots of original app)

52

Violates copyright or trademark of other brands or websites 32

Title
(Copy-right)

Same as the original app 3
Similar to the original app 79
Violates copyright or trademark of other brands or websites 35

Screenshot
(Copy-right)

Same as the original app 35
Similar to the original app 4
Violates copyright or trademark of original app (e.g. copying title, in-app real screen-
shots)

39

Violates copyright or trademark of other brands or websites 38
Different from the real in-app screen 76

Description
(Copy-right)

Same as the original app 5
Similar to the original app 36
Violates copyright or trademark of original app (e.g. including other apps brand names) 41
Violates copyright or trademark of other brands or websites 38
Different from actual function (Misleading descriptions) 73
Irrelevant and excessive keywords in apps descriptions 22

Function
(Copy-right)

Very little or no function (e.g. blank page or a video keeps playing) 67
Same as the original app 6
Similar to the original app 5
Violates copyright or trademark of original app (e.g. including other apps resources) 7
Violates copyright or trademark of other brands or websites 19
The apps primary function is to reproduce or frame someone elses website (i.e. web-
view of anther website)

19

Ads

Ads simulate or impersonate the user interface of any app 70
Ads are displayed outside the app (Ads simulate or impersonate UI notification and
warning elements of the operation system)

34

Displays advertisements through system level notifications (Push notifications) 10
Users cannot dismiss the ads without penalty or inadvertent click-through (e.g. exit ads) 17
Modifies or adds browser settings or bookmarks, adds homescreen shortcuts, or icons
on the users device as a service to third parties or for advertising purpose

54

Spams
Created by an automated tool or wizard service and submitted to Google Play by the
operator of that service on behalf of other persons

2

Offer incentives for rating 2

Others

Violates Youtube policies 16
Automatically redirects users to install other apps (including other third-party market
apps) from Google Play

30

Includes buttons in apps to download other apps from Google Play 49
Forces users to download files or install apps from sources outside of Google Play 25
Downloads unwanted mp3 files 9

Table 1: Empirical Analysis on Policy Violations



3.0.2 Ad Policy Violations

The past studies on ad libraries have been focusing on pri-
vacy issues, such as phone ID and location collection by ad
libraries. However, our empirical analysis results show a
different set of policy-violating ad libraries. Our data set in-
cludes 70 apps with ads which simulate or impersonate user
interfaces of the apps. We also discover 54 ad-policy violat-
ing apps that modify browser bookmarks or add homescreen
shortcuts on users’ mobile phones. Moreover, we find 34
apps, which display ads outside the apps using warning ele-
ments of Android. We also discover 17 apps where users
cannot dismiss ads without penalty or inadvertent click-
through and 10 apps where ads are sent via system notifi-
cations.

The most common policy-violating ad libraries are Start
App, Inmobi, Umeng, and IronSource. Start App library
shows interstitial ads, splash ads, exit ads, native ads and
reward ads. Inmobi ad library includes interstitial ads and
native ads. Umeng ad library sends ads via system notifi-
cation bar, downloads and requests installation of new ap-
plications, and send information to a remote location about
currently running applications, installed applications, and
device information such as International Mobile Station
Equipment Identity (IMEI), kernel version, phone manufac-
turer, phone model details, location (such as GPS coordi-
nates, cell tower location), and network operator informa-
tion. Ironsource library displays native ads and video ads.

In addition to ad libraries, we discover other com-
mon types of libraries among bad apps, including (i)
com.unips, which provide live wallpaper adware, (ii)
com.monotype, which claims to provide free font, (iii)
com.rahul, which provides Youtube downloader, (iv)
com.unity3d and org.andengine, which are game
developing libraries, and (v) io.card credit card scanning
library under the URL https://github.com/card-io/card.io-
Android-SDK.

3.0.3 Spams

Some apps violate policies by apply-
ing automated app creation tools, such as
https://www.appsgeyser.com/, or offering
incentives for rating the apps. We find only 2 apps in each
category. Despite this small number, we notice during
crawling that some Reddit-forum users report developers
who are spamming the market by creating hundreds of
similar apps. Studying these spammers requires different
kind of analysis on developer accounts in addition to apps
themselves. Thus, we leave them as future work.

3.0.4 Others

We discover other apps that misbehaves, but Google’s de-
veloper policies do not cover. They include apps that vi-
olate Youtube policies, redirect users to other apps, and
force users to download unwanted files. We discover that
25 apps force users to download mobogenie.apk file,
which enables control from a remote computer. Moboge-
nie may also be used to download apps, images, videos or
music to mobile phones, manage SD cards, create back-
ups on computer, and edit phone contacts. We find 30
apps, which redirect users to spearmintbrowser.com,
which claims to provide AdBlock and build-in Flash sup-
port features. We also discover 10 apps, which download
APK file named as flash player, 80 bad apps, which redirect
users to download other apps from Google play and other
third-party markets, and 12 apps, which connect to and grab
data from Youtube. Many apps also access mobile users’ ac-
counts by obtaining authentication tokens: 118 apps access
to Google account, 8 to PayPal account and 24 to Twitter
account. Moreover, we find out that 29 bad apps attempt to
share posts on users’ Facebook account using URLs, such
as https://m.facebook.com/dialog/feed?appid = 0link =
1picture = 2name = 3description = 4redirecturi = 5.

4 Detection

Our detection includes two steps: (1) extracting typical
features from both bad apps and benign apps and (2) ap-
plying selected machine learning algorithms to detect bad
apps. The detection can be performed by either security
researchers or Google Play Store managers for vetting sub-
mitted apps before they are officially released.

4.1 Feature Extraction

We extract six groups of features from mobile apps,
including the use of brand names, third-party libraries,
network activities, meta data, permissions, and API calls.
The features can be grouped into two. The first category
includes features derived from our empirical findings,
such as popular brands or app names, network activities
and third-party libraries. The second category is based
on behavior-based features, such as permission and API-
based features. Our feature extraction is implemented
in Python, and detection algorithms are run in Java.
In particular, Androguard library [8] is used to reverse
engineer the app codes, and extract the information about
third-party libraries, network activities, permissions and
API calls. To obtain third-party libraries, we first use the
dx.get tainted packages().get packages()
method of Androguard to obtain package lists from
apps and then, we exclude the package names of



Classes Methods
android.app.NotificationManager notify()
android.app.AlertDialog.Builder show()

android.widget.Toast show()
android.provider.Browser saveBookmark()
android.provider.Browser sendString()
android.content.Context startActivity()

android.net.Uri parse()
java.lang.ClassLoader loadClass()

java.lang.Class forName()
java.lang.Class getDeclaredMethod()
java.lang.Class getMethod()

java.lang.reflect.Method invoke()
dalvik.system.PathClassLoader init()
dalvik.system.DexClassLoader init()

dalvik.system.DexFile loadDex()

Table 2: APIs Used as Features in our Detection

the apps. To analyze the network activities, we
first obtain the String values of APK files via the
d.get strings() method, and then, filter out the
values starting with “http://” or “https://”. For
searching the API calls from third-party libraries, we
apply dx.tainted packages.search methods()
method, and determine whether they are originated from
app source codes or third-party libraries’ source codes.

4.1.1 Use of Brand Names and Other Keywords

We blacklist a list of popular brands and app names that
we have obtained from our empirical analysis. Each brand
name represents a feature for our detection. We also in-
clude other keywords, such as 2, II, Demo, Free, Pro,
3D, and HD as features. Overall, we use the follow-
ing 56 words as features in our detection: ’flash’, ’light’,
’bejeweled’, ’blitz’, ’wAsk’, ’racing’, ’live’, ’wallpaper’,
’construction’, ’city’, ’studio’, ’candy’, ’bluetooth’, ’free’,
’game’, ’sniper’, ’crime’, ’craft’, ’mine’, ’pikachu’, ’font’,
’farm’, ’app’, ’video’, ’download’, ’tube’, ’pou’, ’gangster’,
’bird’, ’flappy’, ’subway’, ’surf’, ’dash’, ’grand’, ’theft’,
’sonic’, ’rio’, ’ninja’, ’demo’, ’pro’, ’3D’, ’2’, ’II’, ’hay’,
’day’, ’flv’, ’adobe’, ’install’, ’despicable’, ’font’, ’galaxy’,
’monotype’, ’volume’, ’boost’, ’mp3’, and ’music’.

4.1.2 Third-Party Libraries

We blacklist the following 16 third-party ad libraries that are
shown to include aggressive ad behaviors: ’startapp’, ’in-
mobi’, ’umeng’, ’ironsource’, ’actionbarsherlock’, ’millen-
nialmedia’, ’adsdk’, ’revmob’, ’chartboost’, ’fmod’, ’furry’,
’mobclix’, ’appflood’, ’tapjoy’, ’jirbo’, and ’squareup’. The
presence of each library is regarded as one feature in our

detection.

4.1.3 Network Activities

We maintain the following 20 blacklisted servers, and deter-
mine whether apps connect to them in their APK files: ’ad-
mob’, ’gstatic’, ’startappexchange’, ’ad-market’, ’search-
results’, ’inmobi’, ’umeng’, ’googleapis’, ’akamaihd’,
’appsdt’, ’spearmint-browser’, ’mobilecore’, ’avazutrack-
ing’, ’cloudfront’, ’youtube’, ’rightyoo’, ’iron’, ’scm-
pacdn’, ’airpush’, and ’ytimg’.

4.1.4 Meta Data

From the metadata of an app, we extract the number of
downloads, the app’s APK file size, the number of ratings,
the average star rating, the number of users rating one star,
the number of users rating two star, the number of users rat-
ing three star, the number of users rating four star and the
number of users rating five star. Thus, the meta data con-
tribute 9 features for our detection.

4.1.5 Permissions

We use the the following 20 permissions as features in
our detection. The first six permissions are derived from
our empirical analysis of bad apps, which shows that
many reported apps ask for credentials, contact list and
hardware control, such as camera, audio or video. The
next six permissions, such as INSTALL SHORTCUT and
WRITE HISTORY BOOKMARKS, are relevant to adware
behaviors. The rest of the permissions, such as BILLING
and SEND SMS, are relevant to malware behaviors.

• android.permission.USE CREDENTIALS



• android.permission.READ CONTACTS
• android.permission.RECORD AUDIO
• android.permission.CAMERA
• android.permission.CAPTURE VIDEO OUTPUT
• android.permission.CAPTURE SECURE VIDEO

OUTPUT
• android.permission.ACCESS FINE LOCATION
• com.android.launcher.permission.INSTALL SHORTCUT
• android.launcher.permission.INSTALL SHORTCUT
• com.android.browser.permission.READ HISTORY

BOOKMARKS
• com.android.browser.permission.WRITE HISTORY

BOOKMARKS
• android.permission.WRITE SETTINGS
• android.permission.INTERNAL SYSTEM WINDOW
• android.permission.BILLING
• android.permission.SEND SMS
• android.permission.CALL PHONE
• android.permission.PROCESS OUTGOING CALLS
• android.permission.INSTALL PACKAGES
• android.permission.RECEIVE BOOT COMPLETED
• android.permission.WRITE EXTERNAL STORAGE

4.1.6 API Calls

We identify 15 API calls that are required to complete spe-
cific behaviors of bad apps. Table 2 shows the list of API
calls used in our detection. The first six API calls are re-
quired for adware behaviors, such as sending ads as notifi-
cations and changing browser settings. The rest of the APIs
are used for Java reflection and dynamic code loading, since
they are normally used by malicious apps to avoid being de-
tected in static analysis. We extract 3 features from each
API calls: presence of identified API calls, number of calls
and whether the class files making the API calls are obfus-
cated. In total, we extract 45 features from API calls.

4.1.7 Others

There are other 4 types of features that we use for
our detection. The first feature is whether the apps
import cryptographic package javax.crypto because
many malicious apps are known to encrypt and decrypt
their codes. Another feature is whether the applica-
tion files overwrite the onBackPressed() method,
since this API is called by apps with exit ads. We
also determine whether the APK codes include sus-
picious strings, such as com.android.launcher.
action.INSTALL SHORTCUT, since homescreen short-
cuts may be added via intents with the above action strings.
The final feature is whether apps include any string liter-
als ending with “.apk”, because many bad apps force users
to download and install external APK files. Similar to

API calls, we derive 3 types of information for each fea-
ture: presence of identified API calls, number of calls and
whether the class files making the API calls are obfuscated

4.2 Detection

We apply 10 commonly used machine learning classi-
fiers using Weka library [13]. The classifiers include Naive
Bayes, Logistic, Sequential Minimal Optimization (SMO),
Lazy-Ibk, Random Committee, Decision Table, Decision
Part, J48, Logistic Model Tree (LMT), and Random For-
est Tree. Naive Bayes is a family of simple probabilistic
classifiers based on the Bayes’ theorem. Logistic classifier
applies the regression model, SMO applies Support Vec-
tor Machines (SVM), and Lazy - Ibk classifier applies K-
nearest neighbours algorithm. Random Committee classi-
fier uses a group of base classifiers, and the result is the
average of the predictions generated by the individual base
classifiers. Decision Table classifier uses a simple decision
table. J48 Tree classifier, LMT classifier and Random For-
est Tree classifier are algorithms based on decision trees.

5 Evaluation

In our evaluation, we apply the 10 classifiers to 628 apps
used for our evaluation, including 302 reported bad apps
and 326 benign apps. The 3-fold cross-validation is used
for reducing over-fitting in our evaluation, where two-third
of our data set is used for training and one-third is used for
testing. Table 3 shows the weighted average of true posi-
tives, false positives, precision, recall and f-measures of our
detection algorithms. True positive rates indicate the per-
centage of real malicious bad apps among the reported bad
apps. False positive rates indicate the percentage of bad
apps that are reported but are not really malicious. Preci-
sion is the ratio of true positives to true positives plus false
positives. Recall is the ratio of true positives to true pos-
itives plus false negatives. F-measure combines precision
and recall, and can be used as an overall measure for evalu-
ation. For true positive rate, precision, recall and f-measure,
the higher the scores are, the better the algorithm performs.
The reverse is true for false positive rate.

In terms of f-measure, SMO classifier performs the best,
followed by Random Committee and LMT classifiers. SMO
classifier uses SVM, which is known to be the best classifier
in many general cases. At the same time, Random Commit-
tee and LMT classifiers are good at dealing with binary and
multi-class target variables, numeric and nominal attributes
as well as missing values. Thus, they seem to be well-suited
for our data set. The least effective classifiers are Naive
Bayes, Logistic regression, and Decision Table classifiers.
This is mainly due to the fact that Naive Bayes and Lo-
gistic regression classifiers perform the best for categorical



Algorithm True Positive False Positive Precision Recall F-Measure
Naive Bayes 0.780 0.216 0.785 0.780 0.780

Logistic regression 0.774 0.228 0.774 0.774 0.774
SMO 0.868 0.136 0.871 0.868 0.867

Lazy-Ibk 0.828 0.177 0.833 0.828 0.827
Random Committee 0.855 0.148 0.857 0.855 0.855

Decision Table 0.750 0.256 0.754 0.750 0.748
PART 0.812 0.190 0.812 0.812 0.812

J48 0.815 0.188 0.817 0.815 0.815
LMT 0.854 0.151 0.857 0.854 0.853

Random Forest Tree 0.852 0.152 0.855 0.852 0.851

Table 3: Evaluation of Our Detection Algorithm

Figure 1: Detection Result by Anti-Virus Software from VirusTotal

dependent variables, while our dependent variables include
non-categorical features, such as star ratings and numbers of
downloads. Moreover, simple decision table classifier may
not capture the complex rules of our feature set. We expect
our results to be improved by focusing on the individual
types of policy-violating apps. By doing so, we can select
the features based on the behaviors specific to the types of
apps. For instance, we can apply text and image similar-
ity features for detecting intellectual property right violat-
ing apps. We leave this as future work, since the purpose of
this paper is to characterize and detect all policy-violating
apps.

We also compare our result with VirusTotal, which scans
the uploaded apps with 57 anti-virus software. We submit-
ted our 302 policy-violating apps to VirusTotal an retrieved
the scanned report. Overall scan report shows that Virus-
Total can detect only 168 of the submitted apps with its
57 anti-virus software. The remaining 134 apps are never

alerted by any of the anti-virus software. At the same
time, VirusTotal falsely reports 57 benign apps as policy-
violating apps. Thus, we can say that the true positive rate
of VirusTotal is 55.63% and the false positive rate of Virus-
Total is 17.48%. The numbers of reported policy-violating
apps (i.e. true positives) by individual anti-virus solutions
are shown in Figure 1.

6 Related Work

Although there are limited studies on intellectual prop-
erty right violating apps, there are many studies on the
repackaged apps. Repackaged apps are the clones created
from the reverse-engineered codes of original apps. Bal-
anza et al.[2] analyze a repackaged malware, called Droid-
DreamLight, and Jung et al. [17] launch repackaging attack
on bank apps. Chen et al. [4], and Gibler et al. [10] study the



impact of repackaged apps and find out that 14% of original
developers’ revenues and 10% of user are redirected to the
attacker. Potharaju et al. [22] use permission information
and estimate that 29.4% of apps are likely to be plagiarized.

Since repackaged apps contain similar source codes
as original apps, their detection mechanisms focus on
the source code similarities. DroidMOSS [33] and Jux-
tapp [14] [18] apply fuzzy hashing on program instruction
sequence and derive the similarity score by calculating the
edit distance between two generated fingerprints. Crussell
et al. [6] propose DNADroid, which uses Program Depen-
dence Graph(PDG) to determine code similarity. AnDar-
win [7] applies Locality-Sensitive Hashing (LSH), Lin et
al. [19] use thread-grained system call sequences and Zhou
et al. [32] propose linearithmic search algorithm in a metric
space to detect repackaged apps. Deckard [16] uses a tree-
based detection algorithm for detection. Huang et al. [15]
propose an evaluation framework for detection algorithms
of repackaged apps by measuring their resilience to obfus-
cation methods. Different from other approaches, Zhou et
al. [31] propose to use software watermarking to prevent
repackaging. Since these methods only focuses on code
similarity, they cannot detect apps, which copy the external
features of original apps and not their source codes.

Similar to our paper, several previous work highlights
various issues of ad libraries. However, they focus more
on privacy, security and usability issues, and not on their
aggressiveness for showing ads or obtaining clicks from
users. Adrisk [12] applies static analysis on top 100 com-
monly used ad libraries, and shows that most ad libraries
collect private information, including users’ location, call
logs, phone number, browser bookmarks, and the list of
installed apps on the phone. Moreover, some libraries di-
rectly fetch and run code from the Internet. Book et al. [3]
make a longitudinal analysis of permissions used by ad li-
braries, and discovers that dangerous permission usage by
ad libraries are increasing over time.

7 Conclusion

In this paper, we perform extensive empirical analysis
on bad apps that are reported and removed from Google
Play store. These bad apps are diligently collected by crawl-
ing Reddit forum posts and Google Play store over a three-
month period. Our analysis of the data set provides a com-
prehensive overview of reported bad apps and their policy-
violating behaviors. Our findings show that detecting copy-
right violating apps and ad-aggressive apps is important
for maintaining good quality of future mobile app market.
Thus, we urge industry and research communities to give
more attention to these areas. Our paper also includes de-
tection of bad apps using machine learning classifiers. We
derive features based on the results of our findings as well

as behavior-based features. Although our current solution
is performing well for detecting policy-violating apps, we
believe that better solutions can be invented by focusing on
each type of policy-violating apps.
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